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A discrete integrable hierarchy related to the supersymmetric 
eigenvalue model 

I N McArthur 
Depamnent of Physics, The University Of Wesrem Am&. Nedlands, Australia 6009 

Received 21 February 1994 

Abstract. The supersymmetric eigenvalue model has been proposed as the analogue for twc- 
dimensional supergravity of the m u i x  model. The double-scaling limit exhibits an integrable 
fermionic hierarchy which is related to the Komweg-de Vies hierarchy. In this paper, a discrete 
analogue Of this integrable structure, related to the Toda lattice, is found in the supersymmetric 
eigenvalue model. 

1. Introduction 

Recently, important progress has been made in the understanding of non-critical string 
theories, requiring, as it does, the analysis of the quantum theory of two-dimensional 
gravity coupled to conformal-matter systems. Insights have been achieved by a variety of 
methods, one of the most significant being a discrete approach to two-dimensional quantum 
gravity in the form of matrix models where the double-scaling limit allows extraction of 
information about the continuum theory. The analogue of the matrix-model approach €or 
quantum supergravity coupled to superconformal-matter systems is not obvious, due to the 
technical problem of defining a discrete analogue of the gravitino. A proposal by Alvarez- 
Gaumt et aJ [I] to avoid this problem characterizes the partition function of the discrete 
version of supergravity in terms of a set of super-Vuasoro constraints, analogous to the 
Virasoro constraints satisfied by the partition function of the one-matrix model. A solution 
to these constraints was found in the form of a supersymmetric eigenvalue model, which is 
a supersymmetric generalization of the eigenvalue model which results when the 'angular' 
integrations are carried out in the ordinary one-matrix model. The double-scaling limit of 
the supersymmetric eigenvalue model reproduces the scaling dimensions of gravitationally 
dressed operators for the (2,4m) minimal superconformal models coupled to supergravity, 
an indication that this approach may be comect. 

One of the more surprising results from matrix models has been the revelation of 
links between quantum two-dimensional gravity and integrable systems, specifically the 
Korteweg-de Vries (KdV) hierarchy. The integrable structure is already present at the level 
of the matrix model where the partition function is a tau function of the Toda hierarchy 
satisfying a set of Virasoro constraints. An important feature of the double-scaling lit, 
which relates the onematrix model to two-dimensional gravity, is that this integrable 
structure is preserved. 

In the case of the double-scaling limit of the supersymmehic eigenvalue model, an 
underlying integrable structure was identified by Becker and Becker [2] and examined 
further in [3] and [4]. It is an integrable fermionic hierarchy which essentially results from 
variation of the KdV hierarchy. In order to better understand the relationship between the 

0305-44701941126161+17$19.50 @ 1994 IOP Publishing Ltd 4161 



4162 I N  MeArthur 

supersymmeeic eigenvalue model and two-dimensional supergravity, it is important to know 
if this integrable structure observed in the continuum limit of the supersymmetric eigenvalue 
model has some progenitor in the discrete theory which is preserved in the process of taking 
the double-scaling h i t .  In this paper, it is shown that this is indeed the case, in that an 
integrable fermionic extension of the To& hierarchy can be related to the partition function 
of the supersymmetric eigenvalue model. 

The paper is organized in the following fashion. In section 2, the one-matrix model and 
its relation to the Toda hierarchy is briefly reviewed, while in section 3 some facts about 
the supersymmetric eigenvalue model and the integrable structure underlying its double- 
scaling limit are presented. In the next section, an integrable fermionic extension of the 
Toda hierarchy is derived and its relation to the partition function of the supersymmetric 
eigenvalue model is examined in section 5. The conclusion contains some observations on 
the nature of the super-Virasoro constraints on the partition function of the supersymmetric 
eigenvalue model in the light of this integrable structure. 

2. The bosonic one-matrix model 

The bosonic one-matrix model and its relationship to two-dimensional-matter systems 
coupled to quantum gravity has been much studied-we refer to the reviews [5] and the 
references contained therein for details. The partition function involves a matrix integral 
over N x N Hermitian matrices and, after integrating over the 'angular variables', takes the 
form 

The surviving integrals are over the eigenvalues hi (i = 1.2, . . . , N) of the Hermitian 
matrices, while the potential is 

and 

A(h) = n(A; - hj) 
i<j 

.is the Vandermonde determinant. The partition function can be re-expressed in the compact 
form 

Z~[gk;  NI = N!det;.j Hi, j  (2) 

where Hi.j is the N x N matrix with entries Hj.j = H;+j-z for 

Hi = dhe-"(A)hi (i > 0). s (3) 
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The partition function ZB[gk; NI has some remarkable properties. First, it satisfies a 
set of Virasoro constraints L,ZB[gk; NI = 0, n > -1 [ 6 4 1  with the Virasoro generators 
expressed in terms of the coupling constants gk of the matrix potential by 

It is also a tau function for the Toda-lattice hierarchy [S,  10,111, a discrete integrable system. 
The relationship with the Toda hierarchy is conventionally established using the 

(unnormalized) orthogonal polynomials p,(A) defined by p,(A) = A" + O(A"-') and 

J dAe-""'pm(l)p,(h)6,.. = h,. (5) 

The orthogonal polynomials satisfy a recursion relation 

A,D~(A) ~ n + l ( A )  + Sapn(A) + Rn~a-l(A) (6) 

where the R, and S, are independent of A but depend on the couplings gk via the coupling 
constant dependence of the orthogonal polynomials. The latter can be expressed in the form 

with the coefficients y iz  being determined in terms of the Ri and.$ by differentiation of (5) 
and repeated use of (6). Equations (6) and (7) form a Lax pair for an integrable hierarchy 
in that their compatibility (in the sense that [a la& A] = 0) gives rise to a sequence of flow 
equations for Rn and S,. The first few of these are 

a s, 
ag2 
-=  Rn(S4 + sn-1) - Rn+l(sn+l t Sn), 

This hierarchy of equations is the Toda-lattice hierarchy and it can also be expressed in 
Hamiltonian form. Namely, there exist Poisson brackets ( , ]PB and Hamiltonians E, such 
that the flow equations can be written as 

The Poisson brackets are defined by 
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and the Hamiltonians 'H, are of the form X m  = E, %(n) With 

The first few are 

XI = CS" 
n 

'Hz = 

XI = 4 X ( R n + i S n + i  +2Rn+isn + 

+ S,' + RA " 
+ 2 R J n  + R & - i ) .  

n 

The flows in parameters g, and g. are compatible (i.e. they commute) because the 
Hamiltonians are in involution with respect to the Poisson brackets, {%,,,+I, %"+I ]pB = 0. 

The existence of the infinite hierarchy of compatible flows (or equivalently, an infinite 
set of conserved charges 71, in involution) is related to the existence of a bi-Hamiltonian 
structure. This means that there is a second coordinated Poisson structure { , ]pm such that 
the hierarchy can be expressed in the form 

The second Poisson structure is defined by 

( R m v  RJPBZ = RmRn(&n,n- i  - S m . n + ~ )  

{ R m ,  & ~ B Z  = R m s n ( & w  -Sm.n+i) (12) 

I s m ,  ~ ~ I P B Z  = Rn8m.a-i - Rm8m.n+1.  

The relationship between the onematrix model and the Toda hierarchy can be expressed 
at a more fundamental level-the partition function Z&; NI is a tau function ~ ~ [ g w ]  for 
the hierarchy. The corresponding Baker functions are essentially the orthogonal polynomials 
[8,10],  in that 

with X ( h )  the vertex operator 

The solutions R, and S, to the hierarchy of equations (9) generated by the matrix model 
via the recursion relation (6) take the form 

(14) 
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Using expression (2) for the partition function and the fact that, from the definition (3), 

it is clear that the R. and S, can be expressed entirely in terms of the Hi. Further, the 
fact that that the po!ynomial in A, given by (13), is of maximum order A" and contains no 
negative powers of A is a consequence of (2) and ' 

Hi+] X ( A ) .  Hi Hi - - A '  

3. The supersymmetric eigenvalue model 

Although a direct analogue of the matrix-model formulation for theories of two-dimensional 
superconformal matter coupled to quantum supergravity is lacking at present due to the 
conceptual difficulty of interpreting the gravitino in discrete terms, Alvarez-Gaum6 et a1 
[l] have found evidence that a supersymmetric analogue of the 'eigenvalue model' (1) may 
be relevant to two-dimensional supergravity theories. The model is defined by intloducing 
fermionic partners 8; and Ck+; for the eigenvalues Ai and coupling constants gk, respectively, 
and requiring that the partioon function zS[gk, ck++; NI satisfy the set of super-Vioro 
constraints 

G,-+ZS[gk, h+$; NI = 0 n > 0 

with 

A solution to this set of constraints is given by 

where the supersymmetric potential is 

The partition function is non-vanishing only for even N and it was shown in [12] that 

where 



4166 I N  McArthur 

and A is the 2N x 2N antisymmetric mairix with entries 

This expression for the partition function is the analogue of (2) in the bosonic case as the 
(1 are natural fermionic analogues of the Hi, in that 

An equivalent expression for the partition function is 

which was obtained by Becker and Becker [2] by evaluating (16) to second order in the 
fermionic couplings and relates the partition function of the supersymmetric 2N-eigenvalue 
model to that of the bosonic N-eigenvalue model. 

On the basis of result (Zl), Becker and Becker [Z] have found a solution to the super- 
Virasoro constraints in the double-scaling limit [I] in terms of the double-scaling limit 
zB[fk] of the partition function of the one-matrix model, namely 

where f k  and 8 are the continuum bosonic and fermionic couplings, respectively. As is 
now well appreciated [5], is the square? of a tau function t [ t k J  for the KdV hierarchy 
of nonlinear differential equations. The integrable flow equations of the KdV hierarchy are 
expressed in terms of the variable uDZIn (with D = a/ax, where x E to) and take 
the form 

where the R,,, = (a/at,)D lnZ,[tk] are the Gelfand-Dikii polynomials (in U and its 
derivatives) generated by the recursion relation 

DRn+l = (D3  f 4 u D  + ~(Du))%& 

with % - $. Using these recursion relations, the free energy Fs[tk, ik] = InZs[k, $1 of 
the supersymmetric eigenvalue model can be expressed in terms of the fermionic variable 

as 

DzFs[tk, 61 = U - 2D(iDQ. (24) 

t In the discrete and continuum uses. the p a  of the Supersymmetric partition function that is independent of the 
fermionic couplings is the square of a. tau function for an integrable hieraxchy. 
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In 121, it was shown that U and i satisfy a hierarchy of flow equations in the even 
and odd couplings t k  and in which the flows are expressed as polynomials in U and 
f, their integrability being established by the existence of specific solutions generated by 
Zs[tk, T i ] .  If the double-scaling limit of the supersymmetric eigenvalue model does describe 
quantum supergravity coupled to supersymmetric matter, then these equations are related 
to Ward identities satisfied by correlation functions. The flow equations for U and D? were 
shown in [3] to constitute a variation of the Kdv hierarchy and, based on this work, it was 
established in [4] that there exists a bi-Hamiltonian formulation in terms of odd Poisson 
brackets similar to the antibracket of Batalin and Vilkovisky 1131. This is intimately related 
to the integrability. 

To further the understanding of the relationship between the supersymmetric eigenvalue 
model and the double-scaling limit proposed in 121, it is important to be able to identify the, 
discrete analogue of this integrable structure. 

4. The discrete integrable fermionic hierarchy 

For the proposed double-scaling limit of the supersymmetric eigenvalue model discussed 
above, Figueroa and O'Farrill[3] noted that the hierarchy of equations describing the bosonic 
flows for U and Of in the variable tn follow by replacing U in the KdV flows 

by 

U = U +OD? (25) 
(where B is a Grassmann parameter) and identifying coefficients of 1 and O on both sides 
of the equation. It was demonstrated in [4] that the resulting equations can be written in 
Hamiltonian form with respect to odd Poisson brackets, analogous to the antibracket in 
the formalism of Batalin and Vilkovisky [13]. This is an infinite-dimensional analogue 
of a natural Hamiltonian dynamics which is induced on the cotangent bundle to a finite- 
dimensional symplectic manifold by Hamiltonian dynamics on the manifold [14]. Roughly 
speaking, it is the fact that the flows for D? are, by the construction (ZS), the 'first variations' 
of the usual KdV flows which makes this interpretation appropriate. 

This suggests looking at the first variation of the Toda hierarchy to identify the discrete 
fermionic hierarchy which is related to the supersymmetric eigenvalue model. This is 
achieved by replacing R, and S, on the left- and right-hand sides of the Toda hierarchy of 
equations (8) by R, + ei, and S,, +e&,  where hatted quantities are Grassmann-odd, and 
equaJing the coefficients of 1 and O on each side of the equations. The first few equations 
for R, and 3" are 
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This hierarchy of equations admits a Hamiltonian structure with respect to odd Poisson 
brackets. 

Before showing this, we briefly review the construction of odd Poisson brackets on 
finite-dimensional symplectic manifolds [14]. Given an even-dimensional manifold M with 
local coordinates xi and a non-degenerate closed two-form w = ojj(x) dx' A dxj, ordinary 
Poisson brackets are defined by [ f , ~ ) ~ ~  = (af/ax')o'j(x)ag/axj where f and g are 
functions on M and w'jojk = 8;. A flow in the parameter t on the space of functions on M 
is Hamiltonian if there is a function X ( x )  such that af/at = [X, f ) p ~ .  An odd symplectic 
structure can be defined on the tangent bundle of M with local coordinates ( x i ,  ti) (where 
the Grassmann variable ti corresponds to a/ax') and gives rise to the odd Poisson brackets 

. .  
(X',X')AB = o = ( < i i , t j ] A B  {x',tjlA5 =-$ 

(with 'AB' standing for antibracket). In terms of 8' = w"(x)tj, this becomes 

The ordinary Hamiltonian flow 

can be naturally extended to the cotangent bundle of M (with local coordinates (xi, 8')) by 
replacing xi in (28) by Xi = xi + 0p and taking the coefficients of 1 and 0 

ax' . ax .. 
at ax1 
- = -01' 

By defining g(x) to be the coefficient of 0 in W ( X ) ,  this system of equations can be put 
into Hamiltonian form with respect to the odd Poisson bracket as [14] 

The hierarchy of equations obtained by first variation of the Toda hierarchy provides 
a (countably) infinite-dimensional example of this construction. If R,-and S, in the 
Hamiltonians Xm for the Toda hierarchy are replaced by Rn+Oka and S.+eS,, respectively, 
and the coefficient of 0 in the resulting exnression is denoted bv 'k,. then the hierarchv 
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with respect to the odd Poisson brackets 

{ R m , R n ) A B = O = { R m , S n ) A B = { S m . S n ] A B  

{Rmr &)AB = 0 = { S m ,  &)AB 

[ R m ,  &)AB = Rm(8m.n - J m , a + l )  

{ k m v  k l A B  = o =  { i m ,  i n 1 A B  

( k s  &)AB = &?"ha - J m . n + l )  

&]AB 

which are associated with the Poisson brackets (IO) by an infinite-dimensional version 
of the construction (27). This is verified explicitly in appendix A as it is not a priori 
obvious that the finite-dimensional results o f  [14] are applicable due to the infinite- 
dimensional nature of the symplectic manifold underlying the Toda hierarchy. It is also 
shown in appendix A that the flows in different parameters are compatible (in the sense that 
[a/agT, a/ag,! = 0)  as a result of the Jacobi identity for odd Poisson brackets and the fact 

In fact, it is possible to define a second set of odd Poisson brackets [ , )AB2 based on 
that { X m + l s  = X n + i ) ~ ~  0. 

the second Poisson structure (12) of the To& hierarchy: 

{ R m .  &)AB2 = 0 = {Rm? Sn1ABZ = {sm, s a l A B 2  

{ R m ,  &)AB2 RmRrz(&n,n-l  - d m , n + l )  

{ R m ,  jalAB2 

I s m ,  &)AB2 = R m + l & w t - l  - Rm8m.=n+1 

I k ,  ~ ) A B Z  = ( R m &  + & R d ( 8 m . n - l  -&"I) 

{kn, %)AB2 -k kn&)(&n,n - J m . n + l )  

{b, B l A B z  = k m + l ~ m . n - l -  imimsm.n+l. 

Rmsn(8m.n - J m . n + l )  = { E m ,  SnlABZ 

In terms of this second odd Poisson structure, the equations (26) can be expressed in the 
form aA./ag, = {F&,,A")AB~, where A, represents R,, s,, in or in. The verification is 
similar to that for the first odd Poisson s!suctllre. The existence of a bi-Hamiltonian structure 
for the hierarchy (26) can presumably be used to prove the existence of the infinitely many 
conserved quantities 2~ purely in terms of the odd Poisson structure rather than resorting 
to the use of the ordinary Poisson structllre for the Toda hierarchy (which is a sub-hierarchy 
of (26)) as is done in the appendix. 

In the next section, we find specific solutions to this hierarchy of equations related to the 
patition function of the supersymmetric eigenvalue model. The bi-Hamiltonian' structure 
discussed above, which underlies this hierarchy of equations, is thus the discrete progenitor 
of the bi-Hamiltonian structure constructed in 13.41 for the integrable hierarchy of Becker 
and Becker [2] which appears in the continuum limit of the supersymmetric eigenvalue 
model. 

. 

(30) 

5. Relating the hierarchy to the supersymmetric eigenvalue model 

First, ws recall that the bosonic eigenvalue model generated solutions R, and S,, to the 
Toda hierarchy (9) of the form (14) and that these solutions can be expressed entirely in 
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terms of the Hi defined in (3). Using the earlier observation (20) that the & + I  in (19) is the 
natural fermionic analogue of the g, we define in and in to be the coefficients of B when 
the replacement Hi + Hi + B(j+l is made in these solutions: 

R,W + e ~ + ~ i  = R,[H~I +el i , [Hj ,  

Then R,, S,, d, and in, defined in this fashion, generate solutions to the hierarchy 
of equations (29). This follows because ( i + ~  can be written in the form 6Hi, with 
8 = -&$+ta/agk, so that d. = 6Rn. The absence of any g k  dependence in the 
operator 6 means that [S, a/agk] = 0 with the result that 

Since a R,,/agk can be expressed in terms of a polynomial in the R, and the S,, 6(aRn/agk) 
is equivalent to the coefficient of 0 after the replacements R, -+ R,+ed, and S,, --f S,,+0& 
are made in this polynomial, which is precisely the means by which the right-hand sides of 
the hierarchy of equations (26) were obtained (and similarly for a&/agk). 

It is also interesting to note that the solutions R,, S,,, dn and 3" (defined above) obey 
'odd'-flow equations with respect to the fermionic couplings h++. Trivially, 

These flows can also be put into bi-Hamiltonian form with respect to the odd Poisson 
brackets as 

This is proven in appendix A, along with the fact that these flows anticommute (since the 
variables tk+1 are Grassmann-odd) with each other and commute with the even flows (29). 
Note that thekamiltonians determining the odd flows are the Grassmann-even Hamiltonians 
Rm (as opposed to the Grassmann-odd Rm for the even flows). It should be emphasized that 
the results in appendix A constitute a proof of the integrability of the fermionic hierarchy 
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(29),(34), which includes both even and odd flows, independent of the existence of the 
specific solutions given above. 

To relate these solutions of the variation of the Toda hierarchy to the partition function 
of the supersymmetric eigenvalue model, recall that the partition function for the double- 
scaling limit proposed in [2] satisfies 

~ ~ i n z ~ [ r . , f ~ ]  = u - ~ D ( ? D ~  

with D = a/ax = apto and it is U and D? which constitute the solutions to the integrable 
'first variation' of the KdV hierarchy. As the discrete analogue of Of(::) is f; - fa-l (this 
follows from the N x N Hermitian-matrix model underlying the supersymmetric eigenvlaue 
model [S, 10, ll]), so D21n Zs[tn, ?,,I has the discrete analogue 

InZdgk,fkt;; 2 n + 2 1 - 2 l n Z ~ ~ g ~ , f ~ + ~ ; 2 ~ l f ~ n Z ~ ~ g ~ , ~ ~ + ~ ; 2 n - ~ l .  (35) 

In appendix B, this is shown to be equivalent to 

with 

Comparing with the continuum case, 2 In R, is the discrete analogue of u ( x )  (this is known 
from the bosonic case [S, ll]), xn is the discrete analogue of ?(x )  and axn/agl is the 
discrete analogue of D?(x). Just as D i ( x )  is a solution to the 'first variation' of the KdV 
hierarchy in the continuum case, so ax./agl is a solution to the~first variation of the Toda 
hierarchy, as ax./agl = in. This follows from Z&; n] = rn and (14), which imply that 

These correspondences between discrete and continuum quantities are further reinforced 
by the fact that, in the double-scaling limit proposed in [2], f = - cnaofnR.+~, where 
the Gelfand-Dikii polynomials En satisfy au/at, = DRmtl and are Hamiltonian densities 
in that dx 'R,+l is the Hamiltonian for the KdV flow in the variable rm. The discrete 
analogue of f(x) is ,yn, which is defined by (37). The quantities (a/ag,) In(cn+&J are 
also Hamiltonian densities in that ~,(a/agm)In(r,,tl/~n) is the Hamiltonian 'FI, for the 
Toda hierarchy (9). Furthermore, substitution of (14) into the first of the equations (8) yields 
Rn = rntlz,,-,/r2, so that 

axn/agl = ss, = in. 

alnR, a z ~ + ~  a T. - = -In- - -In- 
%, axm G agm L-I 

a discrete analogue of the KdV equation au/at, = DR,+,. 
Although fairly crude, the above analysis is indicative of the hypothesis that the links 

established in this paper between the supersymmetric eigenvalue model and the integrable 
fermionic hierarchy obtained by first variation of the Toda hierarchy are responsible for the 
integrable structure underlying the double-scaling limit found in [2-4]. 
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6. Conclusion 

One of the most fascinating aspects of the matrix-model approach to two-dimensional 
quantum gravity is that not only is the partition function a tau function for an integrable 
System, but it also obeys the set of Virasoro constraints L,Z&; NI = 0 (n 2 -I), with 
L, defined in (4). At the level of the corresponding eigenvalue model (l), the action of the 
Viasoro generators L, generates a simultaneous reparametrization of all the eigenvalues 
hi equivalent to that induced by the V i o r o  operator - CL, h:+'a/ahi. Although this 
has no obvious analogue in the continuum limit, the action of the Virasoro generators L, 
can be related to reparametrizations in another parameter space which do have a continuum 
analogue. The parameter space involved is the spectral parameter space with local coordinate 
h in terms of which the orthogonal polynomials (5) are expressed. As already mentioned, 
the orthogonal polynomials are essentially Baker functions for the Toda hierarchy [8,10]. 
In the continuum limit, the right-hand side of the recursion relation (6) satisfied by the 
orthogonal polynomials becomes a second-order differential operator [15] and (6) becomes 
the spectral equation satisfied by the continuum Baker function. It has been noted by 
several authors [9,16,17] that the Vuasoro constraints on the partition function for the 
doublescaling l i t  of the one-matrix model are quite natural when viewed in terms of 
reparametrizations of the spectral parameter, which assumes the role of a local coordinate 
on a Riemann surface in the formalism of J i b 0  et a1 [18] which relates tau functions 
for the KP hierarchy (and its two-reduction, the KdV hierarchy) to free fermion correlation 
functionst. The corresponding discrete analogue is the correspondence between the action 
of the generators L, on the partition function of the one-matrix model and the action of the 
operator L, = -hn+Ia/ah on the space of orthogonal polynomials [SI. 

For the supersymmetric eigenvalue model, the action of the super-Wrasoro generators 
G,-1 defined in (15) on the partition function (16) is equivalent to simultaneous 
supe;conformal transformations in the superspaces whose local coordinates are the 
eigenvalues (hi, e!). It is natural to enquire whether there is also some superspace, analogous 
to the spectral space in the bosonic case, on which Baker functions are defined and on which 
the super-Virasoro generators Gn+ induce superconformal transformations. This action 
might then be expected to carry over to the double-scaling limit, unlike the superconformal 
transformations on the eigenvalues. 

An obvious place to look for such a structure is on a superspace with coordinates (A, e), 
where h and 0 appear in the supersymmetric potential (17). In the case of the bosonic 
eigenvalue model, the Virasoro operators L. = -hni'a/ah, n 2 -1, have a natural action 
on the space of orthogonal polynomials because they do not involve negative powers of A 
and so preserve the space of orthogonal polynomials. Are there analogues of the orthogonal 
polynomials in the supersymmetric case for which the action of the super-Virasoro operators 
G,,-I in (15) can be l i e d  to the action of the operators Gn-i = -h"[a/a0 -e(a/ah)] 
on tge ( L O )  superspace? Since the vertex operator construction (13) of the orthogonal 
polynomials is responsible for the link between the action of the Virasoro operators L, on 
the partition function for the matrix model and the action of the Virasoro operators L. on 
the orthogonal polynomials, one can attempt to construct supersymmetric analogues of the 
orthogonal polynomials by the action of a super-vertex operator on the partition function 
for the supersymmetric eigenvalue model. In fact, the objects 

, 

t In fact. more general transformations of the spectral p m e t e r  generated by the action of operntors of the form 
A"(ilm /illm) can be reluted to w, consmints on the partition function L7.191. 
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where X ( A ,  0 )  is the super-vertex operator 

are polynomial in positive powers of A and 0 .  This is a consequence of the fact that 
X ( A , 0 ) . H i  = Hi-(Hi+l/A) and X(h,e).<i+l = <i+l -(Ti+z/A)+(BHJA) andexpression 
(18) for 2 s .  However, as P,(A, e) has leading power ha, the space of such polynomials 
is not preserved by the action of the super-Virasoro generators &, n > 0, and the 
space also lacks the completeness properties of the orthogonal polynohials. Furthermore, 
there i s  no obvious relation of these polynomials in h and 0 to a Lax formulation of the 
integrable hierarchy (29), presumably due to the fact that, although the partition function 
Zs[gk, tk+;: 2N] is related to the hierarchy in the manner indicated earlier, it is not a tau 
function for the hierarchy. 

The action of the Virasoro generators Ln = -An+’a/aA on the Baker function is very 
important in the analysis of the continuum limit of the matrix model, in particular in the 
characterization of the partition function in terms of (the square of) a solution of the Virasoro 
constraints [6,7,19,20]. Also, it has been suggested that there is a relationship between 
the ‘spectral’ Riemann surface of the matrix models and the worldsheet of two-dimensional 
gravity (see [8] and section 8 of [21] for some speculations in this direction). If this is 
indeed the case, it is an important issue to try to identify a natural ‘spectral’ super-Riemann 

j surface for the supersymmetric eigenvalue model. 

Appendix A 

In this appendix, it is verified that the Toda hierarchy and its first variation (the first few 
equations of which are given by (26)) can be expressed in the Hamiltonian form (29). 

We begin by showing that the flows aRn/agm = {?&,+I. R n ) p ~  of the ordinary 
Toda hierarchy can be expressed with respect to the odd Poisson bracket in the form 
aR,/ag, = %)AB. NOW 

Since 

(where 6 denotes an arbitrary first variation and & = SR,, = SS,), it follows that 
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Using this together with {&, &]AB = {Rk, Rn)m and a similar result with R replaced by 
S in (30 ,  we obtain {'I?,,,+,, R n J ~  = {%+I, Rn)pB, which is the desired result. The same 
procedure can be used for the flows aS,/ag,. 

To prove that a&/ag,,, can be expressed in the Hamiltonian form (29), we begin with 
the expression (38) with R. replaced by 2". Using the explicit form (30) of the odd Poisson 
brackets and the result (40) yields 

On the other hand, variation of 

yields the property that akn/agm is equal to the right-hand side of (41) if the result 

is used. This latter result follows by acting on (39) with a/aS,. Similar arguments establish 
the expressions (29) for a.$/ag,. 

To show that the flows a&,,, and a/ag, commute, we need the Jacobi identity obeyed 
by the odd Poisson bracket [14] 

0 = ( - l ) (CP")( fR+l) (P ,  {e, R)AB}AB +cyclic permutations (42) 

where 6p = 0 or 1 for P Grassmann even or odd, respectively. Using (29) and applying 
the Jacobi identity, then, for example, 

Applying (29) again, ( ~ , , , + l r f i F + l ~ A B  = a7i,+l/ag,, so it suffices to show that the Q,,+l 
are conserved by all the flows. This follows by varying the conservation law a'H,,+l/atm = 0 
and using [A, a/agml = 0 (the latter is true since, for example, the flow equations for kn 
are obtained by varying aRJag, (expressed as a polynomial in the Ri and Si) and setting 
it equal to (a/ag,)SR,). 

Next, we establish the bi-Hamiltonian form (34) of the 'odd'-flow equations (32) and 
(33). The results for equations (32) follow hivially from the fact that odd Poisson brackets of 
unhatted quantities vanish. The bi-Hamiltonian form of the equations (33) is a consequence 
of the result {X,,,+l, R"}AB = {%,,,+I, RJPB which follows from 

and 
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Similar arguments establish the results for in and for the second odd Poisson bracket. 

identity gives, for example, 
To show that the odd flows (34) anticommute with each other, application of the Jacohi 

Using (34). {%+I, ' H m + 1 ] A ~  vanishes as ?fm+l has no tk+l dependence. Similar arguments 
apply for the flows for S,, k,  and $. To show that the odd flows (34) commute with the 
even flows (29), the Jacobi identity yields, for example, 

The expression { 'H~+~.~?,, ,+~]AB vanishes, as it is equal to -a3tk+,/agm and the 
Hamiltonians xk+j are conserved quantities for the Toda flows. 

Appendix B 

In this appendix, the equivalence of expressions (35) and (36) is established. Using the 
expression (21) for the partition function of the supersymmetric eigenvalue model and the 
fact that Z&; N ] r N [ g k ] ,  a tau function for the Toda hierarchy, equation (35) is equivalent 
to 

Substitution of (14) into the first equation of (8) leads to the expression R, = rn+lr,-l/rn 2 

which allows (43) to be expressed in terms of R,. The desired result (36) then follows by 
the use of the relation 

To establish (44), we introduce the normalized orthogonal polynomials P,(h) which, by (5). 
are related to the unnormalized orthogonal polynomials by 

Using R. = h,/h.-l (see, for example, [SI) and the recursion relation (6), the normalized 
orthogonal polynomials satisfy the recursion relation 
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Also needed are the results 

and 

to be proved below. Then, equation (44) follows by applying the recursion relation (45) 
and the results (14), (46) and (47) to the expression 

It remains to prove (46) and (47). By differentiation of the relation 

1 = dAe-"")Pn(A)Pn(A) s 
with respect to gk 

/ dAe-V(A)Pn(A)AkP,(A) = 2 dAe-"(A)Pn(A)---. a p m  s agk 

The right-hand side of this expression is twice the coefficient of P,(A) in aPn(A)/agk. 
Differentiating P,,(A) = (A"/&) + O(A"-l) with respect to gr and using the standard 
result h, = rn+l/rn from the theory of orthogonal polynomials 151 leads to aP,(A)/agk = 
-$(a/agk) ln(rn+l/rn), from which the desired result follows. 

To prove (47), we use the relation 

By differentiating 0 = JdAe-"(')'p,-l(A)p,(A) with respect to g k ,  the right-hand side 
of this expression is seen to be equivalent to ( ~ , J Z ~ - ~ ) - I / ~  SdXe-V(~)p,-l(X)ap.(A)/agk, 
which is ,/- = 1 / a  times the coefficient of pn-l(A) in ap,(A)/agk. Using the 
expression (13) for p,(A), 

from which the desired result follows. 
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