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Abstract. The supersymmetric eigenvalue model has been proposed as the analogue for two-
dimensional supergravity of the matrix model. The double-scaling limit exhibits an integrable
fermionic hierarchy which is related to the Korteweg—de Vries hierarchy. In this paper, a discrete
analogue of this integrable structure, related to the Toda [attice, is found in the supersymmetric
eigenvalue model.

1. Introduction

Recently, important progress has been made in the understanding of non-critical string
theories, requiring, as it does, the analysis of the guantum theory of two-dimensional
gravity coupled to conformal-matter systems. Insights have been achieved by a variety of
methods, one of the most significant being a discrete approach to two-dimensional quantum
gravity in the form of matrix models where the double-scaling limit allows extraction of
information about the continuum theory. The analogue of the matrix-model approach for
quantum supergravity coupled to superconformal-matter systems is not obvious, due to the
technical problem of defining a discrete analogue of the gravitino. A proposal by Alvarez-
Gaumé er al [1] to avoid this problem characterizes the partition function of the discrete
version of supergravity in terms of a set of super-Virasoro constraints, analogous to the
Virasoro constraints satisfied by the partition function of the one-matrix model. A solution
to these constraints was found in the form of a supersymmetric eigenvalue model, which is
a supersymmetric generalization of the eigenvalue model which results when the ‘angular’
integrations are carried out in the ordinary one-matrix model. The double-scaling limit of
the supersymmetric eigenvalue model reproduces the scaling dimensions of gravitationally
dressed operators for the (2, 4m)} minimal superconformal models coupled to supergravity,
an indication that this approach may be correct.

One of the more surprising results from matrix models has been the revelatmn of
links between quantum two-dimensional gravity and integrable systems, specifically the
Korteweg—de Vries (Kdv) hierarchy. The integrable structure is already present at the level
of the matrix model where the partition function is a tau function of the Toda hierarchy
satisfying a set of Virasoro constraints. An important feature of the double-scaling limit,
which relates the one-matrix model to two-dimensional gravity, is that this integrable
structure is preserved.

In the case of the double-scaling limit of the supersymmetric eigenvalue model, an
underlying integrable structure was identified by Becker and Becker [2] and examined
further in [3] and [4]. It is an integrable fermionic hierarchy which essentially results from
variation of the Kdv hierarchy. In order to better understand the relationship between the
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supersymmetric eigenvalue model and two-dimensional supergravity, it is important to know
if this integrable structure observed in the continuum limit of the supersymmetric eigenvalue
model has some progenitor in the discrete theory which is preserved in the process of taking
the double-scaling limit. In this paper, it is shown that this is indeed the case, in that an
integrable fermionic extension of the Toda hierarchy can be related to the partition function
of the supersymmetric eigenvalue model.

The paper is organized in the following fashion. In section 2, the one-matrix model and
its relation to the Toda hierarchy is briefly reviewed, while in section 3 some facts about
the supersymmetric eigenvalue model and the integrable structure underlying its double-
scaling limit are presented. In the nmext section, an integrable fermionic extension of the
Toda hierarchy is derived and its relation to the partition function of the supersymmetric
eigenvalue model is examined in section 5. The conclusion contains some observations on
the nature of the super-Virasoro constraints on the partition function of the supersymmetric
eigenvalue model in the light of this integrable structure.

2. The bosonic one-matrix model

o

The bosonic one-mattix model and its relationship to two-dimensional-matter systems
coupled to quantum gravity has been much studied—we refer to the reviews [5] and the
references contained therein for details. The partition function involves a matrix integral
over N x N Hermitian matrices and, after integrating over the ‘angular variables’, takes the
form

N
Zplgy; N1 = (nfdli B_V(J"'))A(l)z- §))
i=l}

The surviving integrals are over the eigenvalues A; ({ = 1,2,..., N) of the Hermitian
matrices, while the potential is

o
Vi =) g
kO

and

Ay =[] =xp

i<f

1is the Vandermonde determinant. The partition function can be re-expressed in the compact
form

Zgplgr; N1 = Nldet; ; H; ; ?

where H; ; is the N x N matrix with entries H; ; = H; ;2 for

H; = fd,xe-"(*w (i = 0. (3
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The partition function Zg[gy; N1 has some remarkable properties. First, it satisfies a
set of Virasoro constraints L, Zglgy; N1 = 0, r = —1 [6-9] with the Virasoro generators
expressed in terms of the coupling constants g of the matrix potential by

n

Ly= Z Zkgk

—_— .
k=0 agn—kagk k=0 agk-i-n

@

1t is also a tau function for the Toda-lattice hierarchy [8, 10, 11], a discrete integrable system.,
The relationship with the Toda hierarchy is conventionally established using the
(unnormalized) orthogonal polynomials p, () defined by p,(A) = A" + O("1y and

f dre™"® py (M) pe(Womn = fin. )
The orthogonal polynomials satisfy a recursion relation

ADn (A) = Pupt Q) + Supu(A) + Ry pr1(A) ©

where the R, and S, are independent of A but depend on the couplings gi via the coupling
constant dependence of the orthogonal polynomials. The latter can be expressed in the form

3pa(}) = ®
2 =Y =y O )
98 % P

with the coefficients ¥, being determined in terms of the R; and-S; by differentiation of (5)
and repeated use of (6). Equations (6) and (7) form a Lax pair for an integrable hierarchy
in that their compatibility (in the sense that [8/3gx, A] = 0) gives rise to a sequence of flow
equations for R, and S,. The first few of these are

R
i = RH(SN-I - Sﬂ)

g1
35S
— = Ry — Ry
28 (8)
aRn 2 2

= Ry(Rp—1 — Rp41 + 551 — Sp)
882
as,
92: = Ru{Sy + Sp—1) — Rps1(Sps1 + 5.

This hierarchy of equations is the Toda-lattice hierarchy and it can also be expressed in
Hamiltonian form. Namely, there exist Poisson brackets { , }pz and Hamiltonians ,, such
that the flow equations can be written as

3R, 35,

= {Mm+1, Ry
7S {Hm+1, Rales 2

= {Hm-i-l + S }PB . (9)

The Poisson brackets are defined by
{Rm: Rn}PB =0
{Rm, Sn}PB = Rm (Sm.n - 3m.n+l) (10)
{Sm, Sale =0
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and the Hamiltonians H,, are of the form H,, = Y, Hx(») with

1

M) = o

f dhe™V® b, QIN" p, ().
The first few are
Hl = Z Sn
n
1
Ho = 3 Zn:(Rn+I + S,% +Ry) an

Ha =1 (Rut1Ses1 + 2Rns1Ss + 53 + 2Ry Sy + RuSamt).
n

The flows in parameters g, and g, are compatible (i.e. they commute) because the
Hamiltonians are in involution with respect to the Poisson brackets, {Hyp1, Hnt1les = 0.

The existence of the infinite hierarchy of compatible flows (or equivalently, an infinite
set of conserved charges H,, in involution) is related to the existence of a bi-Hamiltonian
structure. This means that there is a second coordinated Poisson structure { , }pgz such that
the hierarchy can be expressed in the form

IR, as,
= = {Hyu, Ralepz — = {Hum, Snler2-
82m 0gm

The second Poisson structure is defined by
{Rm, Rplepz == Ru Ry (Sm,r:-l - am.n-!—l)
{er Sn }PB?. = RmSn(Sm.u - 3m.r!+1) (12)

{Sma Sn}PBZ = Rnam.n—-l - Rmam.n+1-

The relationship between the one-matrix model and the Toda hierarchy can be expressed
at a more fundamental level—the partition function Zg[g; N] is a tau function ty[ge] for
the hierarchy. The corresponding Baker functions are essentially the orthogonal polynomials
[8,10], in that

n XY - Talgi]
Tu[84]
with X () the vertex operator

X)) =exp (Z%}.‘ki).

>0 08k

pn(A) = A (13)

The solutions R, and S, to the hierarchy of equations (9) generated by the matrix model
via the recursion relation (6) take the form
82
Ry = rgz In 7, (g1
‘ (14
8 Tentlen]

Sy = — .
? dg1 Talgxl
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Using expression (2) for the partition function and the fact that, from the definition (3),
o.;

EE:: = =iy
it is clear that the R, and S, can be expressed entirely in terms of the H;. Further, the
fact that that the polynomial in A, given by (13), is of maximum order A" and contains no
negative powers of A is a consequence of (2) and

H

X)) -H,=H; -~ =5

3. The supersymmetric eigenvaige model

Although a direct analogue of the matrix-model formulation for theories of two-dimensional
superconformal matter coupled to quantum supergravity is lacking at present due to the
conceptual difficulty of interpreting the gravitino in discrete terms, Alvarez-Gaumé et al
[1] have found evidence that a supersymmetric analogue of the ‘eigenvalue model’ (1) may
be relevant to two-dimensional supergravity theories. The model is defined by introducing
fermionic partners &; and $k+, for the eigenvalues A; and coupling constants g, respectively,
and requiring that the partmon function Zslg:, &, + N1] satisfy the set of super-Virasoro
constraints

Gy Zslgu Gy g N1 = n0

with
”_'zl' = Z E‘H'z

A solution to this set of constraints is given by

Zslgr G4y N1= (H f d; f dg; g7V 8 ) [T — 2 -66p (16)

i<f

n-~1
a 9
+ E kgr e .
a‘fk+m—- k=0 a€k+;‘, 88n-k-1

(15)

where the supersymmetric potential is
Va,0) = 2{&}»" + £4 OA5). an

The partition function is non-vanishing only for even N and it was shown in [12] that
2N

Zsler, G413 2N] = (—1)¥ (2N)! Pfaff A exp ( -1 Z g,-(A-')l-,j;j) (18)
i j=1

where

E‘s':u.l Hiti1 21 (19)

k20
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and A is the 2N x 2N antisymmetric matrix with entries

j-i=t
Apj=—1 Z Hiyi1Hjp— (<.
%0

This expression for the partition function is the analogue of (2) in the bosonic case as the
¢; are natural fermionic analogues of the Hj, in that

f dre V00 = H L85, (20)

An equivalent expression for the partition function is

3211'125[ ey N
Zs(gir Epyys 2N1 = Zplgr; N exp( 21;2;::0&.}5 m+zﬁr;“) @1

which was obtained by Becker and Becker [2] by evaluating (16) to second order in the
fermionic couplings and relates the partition function of the supersymmetric 2¥-eigenvalue
model to that of the bosonic N-eigenvaiue model.

On the basis of result (21), Becker and Becker [2] have found a solution to the super-
Virasoro constraints in the double-scaling limit [1] in termns of the double-scaling limit
Zglt,] of the partition function of the one-matrix model, namely

Ma in Zg[4
Zslte, i) = Zg| Ik]EXP( Z 2 at atB lk])
n m—

n20 m2=1

where t; and £, are the continuum bosonic and fermionic couplings, respectively, As is
now well appreciated [5], Zg[#] is the squaret of 2 tau function f# ] for the Kav hierarchy
of nonlinear differential equations. The integrable flow equations of the KdV hierarchy are
expressed in terms of the variable #D?In Zgp[#,] (with D = 8/8x, where x = #) and take
the form

du

— =DR, '

5 = DRt @2
where the R,4| = (8/8t,)D In Zgl#] are the Gelfand-Dikii polynomials (in u and its
derivatives) generated by the recursion relation

DR = (D? +4uD + 2(Du))R,

with Ro — — . Using these recursion relations, the free energy Fs[ti, fi] = In Zg[ty, &] of
the supersymmetnc eigenvalue model can be expressed in terms of the fermionic variable
F==>"§Ry (23)
k20
ag
D?Fslty, fi] = u — 2D DD). (24)

t In the discrete and continuum cases, the part of the supersymmetric partition function that is independent of the
fermionic couplings is the sguare of a taw functidn for an integrable hierarchy,
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In [2], it was shown that # and f satisfy a hierarchy of flow equations in the even
and odd couplings & and # in which the flows are expressed as polynomials in « and
f, their integrability being established by the existence of specific solutions generated by
Zs(#, 1. If the double-scaling limit of the supersymmetric eigenvalue model does describe
quantum supergravity coupled to supersymmetric matter, then these equations are related
to Ward identities satisfied by correlation functions. The flow equations for # and Df were -
shown in [3] to constitute a variation of the Kdv hierarchy and, based on this work, it was
established in [4] that there exists a bi-Hamiltonian formulation in terms of odd Poisson
brackets similar to the antibracket of Batalin and Vilkovisky [13]. This is intimately related
to the integrability. ’

To further the understanding of the relationship between the supersymmetric eigenvalue
model and the donble-scaling limit proposed in [2], it is important to be able to identify the,
discrete analogue of this integrable structure.

4. The discrete integrable fermionic hierarchy

For the proposed double-scaling limit of the supersymmetric eigenvalue model discussed
above, Figueroa and O’ Farrill [3] noted that the hierarchy of equations describing the boscnic
flows for # and Df in the variable ¢, follow by replacing « in the Kav flows

du
Fr = DRrsi
by
U=u+0Df (25)

{where & is a Grassmann parameter) and identifying coefficients of 1 and # on both sides
of the equation. It was demonstrated in [4] that the resulting equations can be written in
Hamittopian form with respect to odd Poisson brackets, analogous to the antibracket in
the formalism of Batalin and Vilkovisky [13]. This is an infinite-dimensional analogue
of a natural Hamiltonian dynamics which is induced on the cotangent bundle to a finite-
dimensional symplectic manifold by Hamiltonian dynamics on the manifold [14]. Roughly
speaking, it is the fact that the flows for D are, by the construction (25), the “first variations’
of the usval Kdv flows which makes this interpretation appropriate.

This suggests looking at the first variation of the Toda hierarchy to identify the discrete
fermionic hierarchy which is related to the supersymmetric eigenvalue model. This is
achieved by replacing R, and S, on the left- and right-hand sides of the Toda hierarchy of
equations (8) by R, + GR and S, + BS,,, where hatted quantities are Grassmann-odd, and
equating the coefficients of 1 and 6 on each side of the equations. The first few equations
for R,, and §, are

aR,,
dg1

rm1 = Sn) + Ro(Sni — S0)

(26)

33 = Rn(Rn 1 — Ryt + Sz_l - S,%) + Rn(én-l - ﬁnﬂ +25n—1§n—-! - 2Sn-§n)
2

aSn
082

'—Rn(s +Sn !)" n+1(Sn+1+Sn)+R (S,,-I-S_;)— n+l(Sn+]+S)
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This hierarchy of equations admits a Hamiltonian structure with respect to odd Poisson
brackets.

Before showing this, we briefly review the construction of odd Poisson brackets on
finite-dimensional symplectic manifolds [14]. Given an even-dimensional manifold M with
local coordinates x’ and a non-degenerate closed two-form w = o;;{x) dx’ A dx/, ordinary
Poisson brackets are defined by {f. glpe = (8f/0x) (x)8g/8x! where f and g are
functions on M and o¥ ik = 8‘ A flow in the parameter ¢ on the space of functions on M
is Hamiltonian if there is a functlon H(x) such that 8f/8t = {H, flpe. An odd symplectic
structure can be defined on the tangent bundle of M with local coordinates (x*, ;) (where
the Grassmann variable & corresponds to 8/3x) and gives rise to the odd Poisson brackets

', 2/ }ap = 0= (&, §)an {x',&)ap = —8}
(with ‘AB’ standing for antibracket). In terms of &' = % (x)&;, this becomes
P Poed i P 1 gf 3,
{x', x'}ap =0 {x, &/ }ap = 0 = {&', x"}a &*é"h«BﬁZE{f . @D
%
The ordinary Hamiltonian flow

5 2 = > 9 28)

can be naturally extended to the cotangent bundle of M (with local coordinates (x!, £)) by
replacing x’ in (28) by X! = x' + 8¢’ and taking the coefficients of 1 and 8

Bxi - BH ﬁ

ar e’

at AH B’ | PH G\
Bt (Bxf o axian” &

By defining H(x) to be the coefficient of § in H(X), this system of equations can be put
into Hamiltonian form with respect to the odd Poisson bracket as {14]

axz— g’_-x
— =1{H, 2} o

57 = {H,§)as.

The hierarchy of equations obtained by first variation of the Toda hierarchy provides
a (countably) infinite-dimensional example of this construction. If R, and §, in the
Hamiltonians H,, for the Toda hierarchy are replaced by R, +8R, and S,+6 S respectively,
and the coefficient of @ in the resulting expression is denoted by Fm, then the hierarchy
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with respect to the odd Poisson brackets
{Rm, Ru}ap == 0 = {Rp,, S;}aB = {Sn, Sn}as
{Res, Radan = 0 = {5y, S:)ap
(R, S48 = Res(Bmn = Bmnit) = (Ron, Sulap (30)
(Bm, RoJan = 0= (8, Su)ae

{Rm, }AB — m(‘sm,u - 6m.n+l)

which are associated with the Poisson brackets (10) by an infinite-dimensional version
of the construction (27}. This is verified explicitly in appendix A as it is not a priori
obvious that the finite-dimensional results of [14] are applicable due to the infinite-
dimensional natare of the symplectic manifold underlying the Toda hierarchy. It is also
shown in appendix A that the flows in different parameters are compatible (in the sense that
[0/08m, 9/3g4) = 0} as a result of the Jacobi identity for odd Poisson brackets and the fact
that {Hpms1, = Het1}as = 0.

In fact, it is possible to define a second set of odd Poisson brackets { , }apz based on
the second Poisson structure (12) of the Toda hierarchy:

{Rp» Ralapz = 0 = {Rp, Splapz = {Sm, Sulamz

{Rizy Ry}am2 = RuRe(Smnm1 = Smns1)

{Rus: 8a}aB2 = RuSulBmn — Smni1) = (R, Su}ape

{Sms Su}aB2 = Rt 18mnt — R et 31
{Rp, Bylapz = (RuRy + RuRe)Gmn1 — Smnt)

{Ron, 8u)as2 = RSy + RSB — S

{8 SutaB2 = Rmi18mn—1 — Rubpns1.

In terms of this second odd Poisson structure, the equations (26) can be expressed in the
form 0A,/0gm = {Hm, Aplags, where A, represents R, S,, S, or R The verification is
similar to that for the first odd Poisson structure. The existence of a bi-Hamiltonian structure
for the hierarchy (26) can presumably be used to prove the existence of the infinitely many
conserved quantities H,, purely in terms of the odd Poisson structure rather than resorting
to the use of the ordinary Poisson structure for the Toda hierarchy (which is a sub-hierarchy
of (26)} as is done in the appendix.

In the next section, we find specific solutions to this hierarchy of equations related to the
partition function of the supersymmetric eigenvalue model. The bi-Hamiltonian structure
discussed above, which underlies this hierarchy of equations, is thus the discrete progenitor
of the bi-Hamiltonian structure consteucted in [3,4] for the integrable hierarchy of Becker
and Becker {2] which appears in the continuum limit of the supersymmetric eigenvalue
model.

5. Relating the hierarchy te the supersymmetric eigenvaiue model

First, we recall that the beosonic eigenvalue model generated solutions R, and §, to the
Toda hierarchy (9) of the form (14) and that these solutions can be expressed entirely in
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terms of the H; defined in (3). Using the earlier observation (20) that the £;4; in (19) is the
natural fermionic analogue of the H;, we define K, and 5, to be the coefficients of & when
the replacement H; — H; + 6{;+; is made in these solutions:

Ru[H; +0%:41] = Ro[Hi] + O Ra[Hy, L1

Then R, Sg, ﬁ,, and S‘,,, defined in this fashion, generate solutions to the hierarchy
of equations (29). This follows because {;,.,; can be wriiten in the form §H;, with
8 =~ ot 4 8/dg, so that R, = §R,. The absence of any g dependence in the
operator § means that [§, 8/3g;] = 0 with the result that

3R, _OR,

08« dgr

Since 8 R, /8g; can be expressed in terms of a polynomial in the R, and the S, 8(8R,/8g))
is equivalent to the coefficient of § after the replacements R, — R,+0R, and S, — S,+83,
are made in this polynomial, which is precisely the means by which the right-hand sides of
the hierarchy of equations (26) were obtained (and similasly for 63:5 /9gxr)

It is also interesting to note that the solutions R, S,, R, and S, (defined above) obey
‘odd’-flow equations with respect to the fermionic couplings &, 3+ Trivially, '

OR 3s,
t == ——n (32)
a§m+§ a‘fm+%
Also, using R, = 6R, and §, =85, with § = — 3,5, £,,18/9g
0k _ _0Ry 8% _ 3% (33)
asm-{—-é 8gm a§m+% agm

These flows can also be put into bi-Hamiltonian form with respect to the odd Poisson
brackets as

oR
- = {Hui1, Relap = {Hm, Rulanz
a'sm+%
AW
EETI {Hmt1, Sniae = {Hm, Snlap2
m-I-%
. (34)
oR ~ ~
— — = {Hpt1, Ro}as = (Hn Bo}an:
aém+%
35, N .
- = {Hm-i-iu Sn}AB = {th SH}ABZ-
3'$m+§

This is proven in appendix A, along with the fact that these flows anticommute (since the
variables &, ; are Grassmann-odd) with each other and commute with the even flows (29).
Note that the Hamiltonians determining the odd flows are the Grassmann-even Hamiltonians
H, (as opposed to the Grassmann-odd H,, for the even flows). It should be emphasized that
the results in appendix A constitute a proof of the integrability of the fermionic hierarchy
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(29),(34), which includes both even and odd flows, independent of the existence of the
specific solutions given above.

To relate these solutions of the variation of the Toda hierarchy to the partition function
of the supersymmetric eigenvalue model, recall that the partition function for the double-
scaling limit proposed in [2] satisfies

D?In Zs[t,, £,] = u — 2D(iD¥)
with D = 8/8x = 8/84y and it is u and D7 which constitute the solutions to the integrable
‘first variation’ of the Kdv hierarchy. As the discrete analogue of Df () is f, — f,—1 (this

follows from the N x N Hermitian-matrix model underlying the supersymmetric eigenvlaue
model [8, 10, 11]), so D?In Zs[t,, f,] has the discrete analogue

In Zs[ge: Euyg 2 +2) — 210 Zslge, £yt 2] + In Zslge, By 21 — 2], (35)

In appendix B, this is shown to be equivalent to

8 Xn dXn-1 )
2R, —2( 22y, — - 36
" (83; Xn P Xn—1 (36}
with
=Yt (D g Terle] a7
A0 il

Comparing with the continuum case, 2In R,, is the discrete analogue of u(x) (this is known
from the bosonic case [8,11]), x, is the discrete analogue of #(x) and 3x,/dg; is the
discrete analogue of D7(x). Just as D#(x) is a solution to the ‘first variation’ of the Kdv
hierarchy in the continuum case, so 3x./dg: is a solution to the first variation of the Toda
hierarchy, as dx./8g; = S,. This follows from Zg[g:; n] = 7, and (14), which imply that
dxnfog =68, = §,. -

These correspondences between discrete and continuum quantities are further reinforced
by the fact that, in the double-scaling limit proposed in [2], f=— ZH;D £, Ryz1, where
the Gelfand-Dikii polynomials R, satisfy du /8%, = DR, and are Hamiltonian densities
in that { dx R4 is the Hamiltonian for the Kdav flow in the variable f,,. The discrete
analogue of f(x) is x., which is defined by (37). The quantities (8/0gm) In(z,11/7,) are
also Hamiltonian densities in that 3, (3/8gn) In{7y41/7,) is the Hamiltonian H,, for the
Toda hierarchy (9). Furthermore, substitution of (14) into the first of the equations (8) yields
Ry = Tup1Ta—1/77, 5O that

alan_ a 1 Thl d Tn

=2 -~ In

agm agm Tn agm Ta-1

a discrete analogue of the Kdv equation du/8tn = DRy,

Although fairly crude, the above analysis is indicative of the hypothesis that the links
established in this paper between the supersyminetric eigenvalue model and the integrable.
-fermionic hierarchy obtained by first variation of the Toda hierarchy are responsible for the
integrable structure undetlying the double-scaling limit found in [2-4].
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6. Conclusion

One of the most fascinating aspects of the matrix-model approach to two-dimensional
quanturn gravity is that not only is the partition function a tau function for an integrable
system, but it also obeys the set of Virasoro constraints L, Zp[gr; N1 =0 (n > —1), with
Ly defined in (4). At the level of the corresponding eigenvalue model (1), the action of the
Virasoro generators L, generates a simultaneocus reparametrization of all the eigenvalues
A; equivalent to that induced by the Virasoro operator — ,-N=1 AFt13/85;. Although this
has no obvious analogue in the continuum limit, the action of the Virasoro generators L,
can be related to reparametrizations in another parameter space which do have a continuum
analogue. The parameter space involved is the spectral parameter space with local coordinate
A in terms of which the orthogonal polynomials (5) are expressed. As already mentioned,
the orthogonal polynomials are essentially Baker functions for the Toda hierarchy [8, 101.
In the continuum limit, the right-hand side of the recursion relation (6) satisfied by the
orthogonal polynomials becomes a second-order differential operator [13] and (6) becomes
the spectral equation satisfied by the continuum Baker function. It has been noted by
several anthors [9, 16,17] that the Virasoro constraints on the partition function for the
double-scaling limit of the one-matrix model are quite natural when viewed in terms of
reparamettizations of the spectral parameter, which assumes the role of a local coordinate
on a Riemann surface in the formalism of Jimbo et al [18] which relates tan functions
for the Kp hierarchy (and its two-reduction, the Kdv hierarchy) to free fermion correlation
functionsj. The corresponding discrete analogue is the correspondence between the action
of the generators L, on the partition function of the one-matrix model and the action of the
operator £, = —A"13/3A on the space of orthogonal polynomials [8].

For the supersymmettic eigenvalue model, the action of the super-Virasoro generators
G,,_% defined in (15) on the partition function (16) is equivalent to simultaneous
superconformal transformations in the superspaces whose local coordinates are the
eigenvalues (A;, 8;). It is natural to enguire whether there is also some superspace, analogous
to the spectral space in the bosonic case, on which Baker functions are defined and on which
the super-Virasoro generators G,,_% induce superconformal transformations. This action
might then be expected to carry over to the double-scaling limit, unlike the superconformal
transformations on the eigenvalues.

An obvious place to look for such a structure is on a superspace with coordinates (A, 8),
where A and € appear in the supersymmetric potential (17). In the case of the bosonic
eigenvalue model, the Virasoro operators £, = —A"713/8A, n > —1, have a natural action
on the space of orthogonal polynomials because they do not involve negative powers of A
and so preserve the space of orthogonal polynomials. Are there analogues of the orthogonal
polynomials in the supersymmeiric case for which the action of the super-Virasoro operators
G,_1 in (15) can be linked to the action of the operators G -y = —Ar{3/06 —8(8/3A))
on the (X, 8) superspace? Since the vertex operator construction (13) of the orthogonal
polynomials is responsible for the link between the action of the Virasoro operators L, on
the partition function for the matrix mode} and the action of the Virasoro operators £, on
the orthogonal polynomials, one can attempt to construct supersymimetric analogues of the
orthogonal polynomials by the action of a super-vertex operator on the partition function
for the supersymmetric eigenvalue model. In fact, the objects

o X P 6) - Zs[grs £ 13 2n)

Pp(h,8)= A
@9 Zoler Eueyi 27)

t In fact, more general transformations of the spectral parameter generated by the action of operators of the form
AR {30™) can be related to we, constraints on the partition function [7, 19].
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where X (A, 0) is the super-vertex operator

X(A,&)‘:exp(z ;Lf" +Z 85 )
r+i

k=0 k>0

are polynomial in positive powers of A and #. This is a consequence of the fact that
XA, 0)-H = H— (Hip1/A) and X (A, 0) - {121 = Liv1 — ($i42/A)}+ (6 H; /1) and expression
(18) for Zs. However, as P, (A, @) has leading power A", the space of such polynomials
is not preserved by the action of the super-Virasoro generators G,_ I > 0, and the
space also lacks the completeness properties of the orthogonal polynomials. Furthermore,
there is no obvious relation of these polynomials in A and € to a Lax formulation of the
integrable hierarchy (29), presumably due to the fact that, although the partition function
Zslgr, &y 13 2N] is related to the hierarchy in the manner indicated earlier, it is not a taun
function for the hierarchy.

The action of the Virasoro generators £, = —A"t18/9A on the Baker function is very
important in the analysis of the continuum limit of the matrix model, in particular in the
characterization of the partition function in terms of (the square of) a solution of the Virasoro
constraints [6,7,19,20]. Also, it has been suggested that there is a relationship between
the ‘spectral’ Riemann surface of the matrix models and the worldsheet of two-dimensional
gravity (see [8] and section 8 of [21] for some speculations in this direction). If this is
indeed the case, it is an important issue to try to identify a natural ‘spectral’ super-Riemann
surface for the supersymmetric eigenvalue model.

Appendix A

In this appendix, it is verified that the Toda hierarchy and its first variation (the first few
equations of which are given by (26)} can be expressed in the Hamiltonian form (29).

We begin by showing that the flows 8R,/9gw = {Hm+1, Ri.lps of the ordinary
Toda hierarchy can be expressed with respect to the odd Poisson bracket in the form
3R, /0gm = {Hm41, Ra}as. Now

. aH aH
{Hm-}]aRn}AB:Z( m+1{Rk,R laB + 8;:] {Sk, Rnlan
k
3t . 3 e .
+ = g:l {Ry, Ru}as + ag:‘ {Sk,R,,}AB). (38)
Since
> a'-Hrrz+1 5 3Hm+l a
5 = R Ky 39
Honp18Hm1 ;( AT k) (39)

{where § denotes an arbitrary first variation and Ilé,, = &Ry, 3‘,, = 485,), it follows that

Hms1 _ Hmy et _ Hmsa

— = = (40)
Ry 9 Ry 35, 35k




4174 I N McArthur

Using this together with {1%;;, Rp}ap = {Ri, Ru)pp and a similar result with R replaced by
S in (38), we obtain {Hm+1, Rulap = {Hm+e1, Rylpe, which is the desired result. The same
procedure can be used for the flows 85;/8gm.

To prove that BR /8gn can be expressed in the Hamiltonian form (29), we begin with
the expression (38) with R, replaced by R.. Using the explicit form (30) of the odd Poisson
brackets and the result (40) yields

" A a‘}:E‘:m+l aﬁm-i-l a’}'l{m+1 a 8‘Hm+1 3
Hupa1, R = Ry, - R R, - R,. 41
{ 1 n}AB aS,;_] n aS,, n+ 35,,..1 n BS,, ( )
On the other hand, variation of
oR, IHma IHm+1
= {Hu+1, R = Ry - R
agm { m+1 n}PB 35’,,..1 7 BSn n

yields the property that 3R, /8gn is equal to the right-hand side of (41) if the result

aHm-!—l = aﬂm—!—!
a5y, A

is used. This latter result follows by acting on (39) with 9/3.5,. Similar arguments establish
the expressions (29) for a8, /3gm.

To show that the flows 3/8g,, and 8/dg, commute, we need the Jacobi identity obeyed
by the odd Poisson bracket [14]

0 = (—DErFertDip {0 R}splap + cyclic permutations (42)

where €p = 0 or 1 for P Grassmann even or odd, respectively. Using (29} and applying
the Jacobi identity, then, for example,

a a N ~
[a?,,,’ -a?p] Ry = —{Ry, (Plms1s Hps1}as)ab-

Applying (29) again, {Hms1, ﬁp+1}AB = 87%,,+1 /8gm, so it suffices to show that the '}:lp+1
are conserved by all the flows. This follows by varying the conservation law 8H .1 /8tm =0
and using [8, 8/8gm] = O (the latter is true since, for example, the flow equations for R,
are obtained by varying 8R,/8g,, (expressed as a polynomial in the R; and §,) and setting
it equal to (8/38g, )0 Ry).

Next, we establish the bi-Hamiltonian form (34) of the ‘odd’-flow equations (32} and
(33). The results for equations (32) follow trivially from the fact that odd Poisson brackets of
unhatted quantities vanish. The bi-Hamiltonian form of the equations (33) is a consequence
of the result {Hpy.+1, R,,}AB = {Hm+1, Ry}pp which follows from

BHm-I—l = aT'f{rr:+l
Ry, Ry
( 3R (R, Ralan + <

{Hm-i-la fén}AB = Z

I3

{ Sk, ﬁn}AB)

and

{Ry, Ry}ap = {Ry, Rules {S, Relag = {Sk, Rulen
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Similar arguments establish the results for S, and for the second odd Poisson bracket.
To show that the odd flows (34) anticommute with each other, application of the Jacobi
identity gives, for example,

a?R, " 8°R,
35k+§$m+§ a§m+§§k+%

= —{Rn, {His1, Hms1}aslas.

Using (34), {H+1: Hmai}an vanishes as 7,11 has no Ek+% dependence. Similar arguments

apply for the flows for S,, R, and .§’,,. To show that the odd flows (34) commute with the
even flows (29), the Jacobi identity yields, for example,

9 a n
{m, E] Rn = ={Ru, {Mis1, Himt1}ar}AB-

The expression {Hysi1, Hmsilap vanishes, as it is equal to —dH;.1/8gn and the
Hamiltonians H;..; are conserved quantities for the Toda flows.

Appendix B

In this appendix, the equivalence of expressions (35) and (36) is established. Using the
expression (21) for the partition function of the supersymmetric eigenvalue model and the
fact that Zp[gx; Nltwlgel, a tau function for the Toda hierarchy. equation (35) is equivalent
to

82 Tnr1Tn i

Tn+1Tn—1
22 2 N E b
1 k%o T2 0g44188m o

(43)
Substitution of (14) into the first equation of (8) leads to the expression R, = Tut 1 Tni/ T2
which allows (43) to be expressed in terms of R,. The desired result (36) then follows by
the use of the relation 7

2
8 Ry = —t g Tt
98151 98108 Ta—i

8 Tn )( 8 T ) ( 3 1:,,+1)( 3 ‘L',H.l)
4+ {—1In —In - — —In . 44
( g1 Tu—1/ \ 08  Te—1 g T g Ta “4)

To establish (44), we introduce the normalized orthogonal polynomials £,(A) which, by (5),
are related to the unnormalized orthogonal polynomials by

Pn(l)
N/

Using R, = hp/hp-1 (see, for example, [5]) and the recursion relation (6), the normalized
orthogonal polynomials satisfy the recursion relation

Pn()-) =

APy = Rog1 Pt () + 54 Pa(0) + v/ Ra Pt (3, (45)
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Also needed are the results

3
[aerenapiam =-n 2t @>0 6
82k T -
and
V{A) k 32
eV D P, (AP () = l k>0 4
[ TIBAONBR = g n (>0 “7)

to be proved below. Then, equation (44} follows by applying the recursion relation (45)
and the results (14), (46) and (47) to the expression

f dre VAP, (A By (A) = Paet (AR P (M)
It remains to prove (46) and (47). By differentiation of the relation
1= f die YO P (VP

with respect to gz -

BP (}L)

f dre VM P VAP = f dre VW p ()
44

The right-hand side of this expression is twice the coefficient of P,(A) in 3P, (1)/8g;.
Differentiating P, (L) = (A"//h,) + O(A""1) with respect to g and using the standard
result hy = 701/, from the theory of orthogonal polynomials [5] leads to 8P, (L) /dgr =
—-%(a/agk) In(tpy1/7n), from which the desired result follows,

To prove (47), we use the relation

f dreV N B GNP () = (ubaer) /2 f eV P p_ (ON DA ().

By differentiating 0 = fdie™®p,_;(A)p, (1) with respect to g, the right-hand side
of this expression is seen to be equivalent to (Bahy—1)2 [ dre VW p,_1(A)8p,.(1)/85¢,

which is «/(in_t1/ hn) = 1/4/R, times the coefficient of p,_; (A} in 8p,(r)/8gx. Using the
expression (13) for p, (L),

3pn(A) Y S 92

- Inz, + O3
98k dgdg

32
= Pn—1 (A) Y Inz, + O(pu_a(A))

from which the desired result follows.
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